
Exploring Tools and Strategies Used During
Regular Expression Composition Tasks

Gina R. Bai∗, Brian Clee∗, Nischal Shrestha∗, Carl Chapman†, Cimone Wright†, Kathryn T. Stolee∗
∗ Department of Computer Science, North Carolina State University, Raleigh, NC, USA

† Department of Computer Science, Iowa State University, Ames, IA, USA

{rbai2, nshrest, ktstolee}@ncsu.edu, briancleeisme@gmail.com, carlallenchapman@gmail.com, clwright@iastate.edu

Abstract—Regular expressions are frequently found in pro-
gramming projects. Studies have found that developers can accu-
rately determine whether a string matches a regular expression.
However, we still do not know the challenges associated with
composing regular expressions.

We conduct an exploratory case study to reveal the tools and
strategies developers use during regular expression composition.
In this study, 29 students are tasked with composing regular
expressions that pass unit tests illustrating the intended behavior.
The tasks are in Java and the Eclipse IDE was set up with
JUnit tests. Participants had one hour to work and could use any
Eclipse tools, web search, or web-based tools they desired. Screen-
capture software recorded all interactions with browsers and the
IDE. We analyzed the videos quantitatively by transcribing logs
and extracting personas. Our results show that participants were
30% successful (28 of 94 attempts) at achieving a 100% pass rate
on the unit tests. When participants used tools frequently, as in
the case of the novice tester and the knowledgeable tester personas,
or when they guess at a solution prior to searching, they are
more likely to pass all the unit tests. We also found that compile
errors often arise when participants searched for a result and
copy/pasted the regular expression from another language into
their Java files. These results point to future research into making
regular expression composition easier for programmers, such as
integrating visualization into the IDE to reduce context switching
or providing language migration support when reusing regular
expressions written in another language to reduce compile errors.

Index Terms—Exploratory study, regular expressions, problem
solving strategies, personas

I. INTRODUCTION

Regular expressions are powerful programming tools and

pervasively applied in text editors [1], search engines [2], and

network security [3]. However, regular expressions are hard to

read, write, maintain, and understand [4]–[6], and developers

often leave their regular expressions under-tested [4], [7].

Various tools aim to help programmers with solving regular

expression-related tasks. For example, some web-based regular

expression testers (web tools) visualize regular expression

strings for users [8], [9] and some websites explain and

highlight the matching behavior in a debugging environ-

ment [10], [11]. Researchers have created educational games

to encourage programmers to gain better understanding and

experience in interpreting regular expressions in an enjoyable

environment [12]–[15]. All of these efforts reflect a need for

better support for regular expression composition.

However, regular expressions are largely under-studied in

the hands of users. Researchers have surveyed developers

about regular expression usage [4] and measured how well

people can determine if a regular expression matches a

string [5]. Yet, we still do not know what tools and strategies

they use during regular expression composition tasks.

We ran an exploratory study during which 29 participants

composed regular expressions to pass JUnit tests. This study

provided 20 regular expression tasks with accompanying tests

and participants were instructed to complete as many tasks

as possible in the time allotted, using a prescribed (randomly

generated) task order. After analyzing survey responses from

and screen-capture videos generated by the participants in

an hour-long lab activity, we are able to reveal their overall

performance on the regular expression tasks and categorize

their behaviors during composition. Our findings include:

• Visualization of regular expressions (i.e. from web tools)

helps developers pass more tests in the tasks (Sec-

tion V-B).

• Participants who consulted official documentation and

tutorials for regular expressions are more likely to pass

more tests in the regular expression tasks than those

who consulted Q&A websites (e.g., Stack Overflow)

(Section V-C).

• Participants who first tried to compose a regular expres-

sion solution instead of first using web search to find a

solution are more likely to pass all the tests (Section V-D).

• When participants adapted solutions from other lan-

guages, 36.3% copied and pasted contents from websites

(e.g., Q&A sites and web tools) to Eclipse and subse-

quently modified the regular expression syntax to correct

compile errors (Section V-E).

• The most frequent personas were intermediates, repre-

senting participants who showed insufficient prior knowl-

edge on regular expressions and little growth or success

over the course of the experiment (Section VI).

As this is the first observational study of regular expression

composition, we identify several avenues for future work.

These include integrating better support into the IDE to reduce

context switching between applications and providing support

for migrating regular expressions between languages to reduce

compile errors.

The rest of the paper is organized as follows. Section II

presents the research questions, followed by the study design

to address the research questions in Section III. The analysis

197

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00039

is presented in Section IV, followed by results in Section V

and Section VI. A discussion identifies implications and areas

of future work in Section VII, followed by related work in

Section IX and a conclusion in Section X.

II. RESEARCH QUESTIONS

The goal of our research is to understand the relationship

between a participant successfully composing a regular ex-

pression and the strategies used or resources consulted. This

exploratory study uses screen-capture software to observe how

participants compose regular expressions to pass a set of test

cases. This allows us to perform quantitative analysis over

logs extracted from the videos and study the participants’

behaviors.

We explore the following research questions:

• RQ1: What tools and strategies do developers employ

while solving regular expression tasks in the Eclipse IDE?

We analyzed the following dimensions that emerged from

the data: tools (Eclipse built-in debugger, web tools);

different sources of information (tutorials, API doc, Q&A

sites); and strategies for composition, such as copy &

paste or direct creation.

• RQ2: Which personas emerge as representative of the

task performance exhibited by the developers?

To categorize the personas, we used quantitative informa-

tion. Quantitative information included: the average first

time pass rate (the number of passed tests/the number of

total tests in one task) per task, average improved pass

rate per task, and the average number of test runs per

task.

III. STUDY DESIGN

This study was run in a lab environment. Participants were

given a series of tasks to perform in the Eclipse IDE. This

section details the tasks, procedures, participants, and data

collected.

A. Tasks

There were 20 tasks available for participants to complete.1

These tasks were selected for diversity of questions and to

cover the most common language features of regular expres-

sions [4]. Table I shows the complete list of tasks (Task), the

number of JUnit tests in each task (#JUnit) and their sample

regular expression solutions (Sample Regular Expression So-

lutions), including escaped slashes. The examples in Figure 1

and Figure 3 map to tasks ValidEmail and NoVowelsWord

respectively.

A task includes source code with a blank regular ex-

pression, test cases to demonstrate expected behavior, and

a textual description for the expected behavior. Figure 1

contains code for the ValidEmail task in our study that

uses the Pattern.matches() function to validate an email

address input string using a regular expression composed by

a participant. Participants were expected to fill in the blank

1Artifacts: https://github.com/softwarekitty/regexCompositionStudy

1/** A line of text will contain at most one newline

2 * and only then at the end of the string (this

3 * input will not have multiple lines). This

4 * function should take one line of text and verify

5 * that the entire string is composed of one valid

6 * email. Extra characters like whitespace before

7 * or after, or anything that would invalidate the

8 * email are not allowed (except newline at the

9 * end).

10 */

11public class ValidEmail {

12 public boolean isValidEmail(String line) {

13 // TODO compose a regex to complete the challenge

14 String regex = "";

15 return Pattern.matches(regex, line);

16 }

17}

Fig. 1. Code and Description for Task ValidEmail and One Sample Associated
JUnit Test

1public class ValidEmailTest {

2 private static ValidEmail validEmail = null;

3 @BeforeClass

4 public static void setup() {

5 validEmail = new ValidEmail();

6 }

7 @Test

8 public void testIsValidEmail_1() {

9 //a typical email

10 String anyLine =

"###/+-?ˆ_‘{|}˜$$$***@weird.do";

11 boolean correctAnswer = true;

12 boolean compositionAnswer =

validEmail.isValidEmail(anyLine);

13 assertTrue(compositionAnswer == correctAnswer);

14 }

15 // ... More tests, eight test cases in total

Fig. 2. Code and Description for Task ValidEmail and One Sample Associated
JUnit Test

string on line 14 such that the tests for the class (e.g, one

sample test shown in Figure 2), will pass.

The other test cases check three other valid email ad-

dresses: "name@domain.com", "1.2.3.4@crazy.domain.axes"

and "!@B.gone". Four false test cases are covered as well: a

twitter handle, a website url, a single word, and a sentence.

Another sample task NoVowelsWord is introduced in Fig-

ure 3. In this task, participants were expected to fill in

the blank string on line 12 to pass the tests for the class.

The Matcher.find() function searches for occurrences of the

regular expressions in the text provided in the JUnit tests (e.g,

one sample test shown in Figure 4).

Of the tasks, five used the Pattern.matches() function

to validate the entire content of a string against a regular

expression (Validation in Type column of Table I), and 15

used Matcher.find() to examine the strings against a given

pattern and extract pertinent information from a string subject

to a regular expression (Extraction in Type column of Table I).

We point out here that there are many possible correct

solutions for any of the tasks. For example, both regular

expressions .+@.+ and \\S+@\\S+.\\w are candidates

198

TABLE I
REGULAR EXPRESSION PROBLEMS AND SAMPLE SOLUTIONS

Type Task #JUnit Sample Regular Expression Solution
Extraction AlternatingParity 7 (?<!\\d)(([02468][13579])+[02468]?|([13579][02468])+[13579]?)(?!\\d)

Extraction GoogleKeywords 5 .*www.google.com.*q=(.*)

Extraction OnMinuteEvents 5 \\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:00Z\\s+(.*)

Extraction PossessedPossessions 4 [a-zA-Z]{2,}’s([a-zA-Z]{2,})

Extraction ReceiptScanner 4 \\A\\s*(.+?)\\s*[\n]|\\\$?(\\d+(\\.\\d{2})?).*\\Z

Extraction RepeatedWords 5 (\\w+),?\\1\\b\\

Extraction TSVParser 4 ([ˆ\t\n]+)\t[ˆ\t\n]+\t([ˆ\t\n]+)

Extraction VerbPortion 5 \\b([a-zA-Z]{2,})ing\\b

Extraction JavaIntDeclaration 5 \\s*int\\s+\\w+\\s*=\\s*(\\d+);

Extraction LastDuplicateByte 6 ˆ.*([0-9ABCDEF]{2}).*?\\1.*$

Extraction ShortestDNA 5 (AT(((?!AT).)*?)GC)

Extraction TrimWhitespace 6 ˆ\\s*(.*?)\\s*$

Extraction HasSoyIngredient 14 \\b(Edamame|Kinnoko|Kyodofu|Miso|Natto|Okara|Shoyu|Soy(a)?|

soybean(s)?|Tamari|Tempeh|Teriyaki|vegetable protein|Tofu|Yakidofu|

Yuba|TSF|TSP|TVP)\\b

Extraction NoGremlins 6 \\A[ˆ\\f\\r\b]*\\z

Extraction NoVowelsWord 5 \\b[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ]{2,}\\b

Validation OutlineFormat 10 ˆ\\s*([a-z]|[A-Z]|i+|\\d+)\\.\\s+.*$

Validation ReverseSentences 5 \\.(\\S+)*\\S*[A-Z](\\s+\\.(\\S+)*\\S*[A-Z])*
Validation SpacedWords 11 ˆ([a-zA-Z0-9]+\\s+)+([a-zA-Z0-9]+)?$|ˆ(\\s+[a-zA-Z0-9]+)+(\\s+)?$

Validation ValidEmail 8 [A-Z0-9a-z.!#$%&’*+-/=?ˆ_‘{|}˜]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}

Validation ValidPhoneNumber 13 ˆ(\\([0-9]{3}\\)|[0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$

1/** Returns true if any alphanumeric word in the

2 * text contains no vowels. So the strange sentence:

3 * "I have ctmpts training to go to!" should return

4 * true. Input does not need to be a sentence, and

5 * words are separated by whitespace as usual,

6 * ignoring punctuation Words are composed of 2 or

7 * more lowercase or uppercase letters.

8 */

9public class NoVowelsWord {

10 public boolean hasNoVowelsWord(String content) {

11 // TODO compose a regex to complete the

challenge

12 String regex = "";

13 Pattern pattern = Pattern.compile(regex,

Pattern.CASE_INSENSITIVE);

14 Matcher matcher = pattern.matcher(content);

15 return matcher.find();

16 }

17}

Fig. 3. Code and Description for Task NoVowelsWord and One Sample
Associated JUnit Test

for correct solution to the ValidEmail task. The only re-

quirement for successful completion is that all the test cases

pass. Additionally, these sample solutions are smaller than

the regular expressions found in open source projects, where

size is measured by the number of nodes and edges in their

DFA representations from RE2 (a tool that backtracks regular

expressions) [16]. The average size of the sample solutions

is 14 nodes and 37.5 edges, whereas the average size of

15,096 regular expressions from GitHub is 28 nodes and 75

edges [7]. In terms of complexity, measured as the ratio of

edges to nodes, the two data sets are equivalent. Using smaller

regular expressions is a design choice since participants have

a short time to understand the desired behavior of the regular

expression tasks and work on them.

1public class NoVowelsWordTest {

2 private static NoVowelsWord noVowelsWord = null;

3 @BeforeClass

4 public static void setup() {

5 noVowelsWord = new NoVowelsWord();

6 }

7 @Test

8 public void testHasNoVowelsWord_1() {

9 //the word ’CTMPTS’ has no vowels

10 String anyLine = "April and Ron are taking

CTMPTS training";

11 boolean correctAnswer = true;

12 boolean compositionAnswer =

noVowelsWord.hasNoVowelsWord(anyLine);

13 assertTrue(compositionAnswer==correctAnswer);

14 }

15 // ... More tests, five test cases in total

Fig. 4. Code and Description for Task NoVowelsWord and One Sample
Associated JUnit Test

B. Procedure

The study was conducted in a lab setting over two sessions,

one hour each. Participants attended one lab session only. All

desktop computers in the lab had screen capturing software

and browsers installed prior to the study. Eclipse was pre-

loaded with the study tasks. Participants were asked to use

the lab computers only; no personal computers were allowed.

At the beginning of the study, participant were asked

to complete a paper-based questionnaire which focused on

educational classification and programming expertise as shown

in Figure 5.

For the study tasks, each participant received a list of tasks

from Table I defining the order in which they were to attempt

the tasks. The order was randomly generated to avoid potential

learning effects. Participants were given one hour to complete

as many tasks as they could, and were told they were not

199

1) What year are you in school (closest match)?

a) Freshmen b) Sophomore c) Junior d) Senior
e) Graduate Student

2) How would you rate your Java programming experience?

a) Novice b) Intermediate c) expert

3) What is your experience with regular expressions?

a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

4) What is your experience with JUnit tests?

a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

5) How frequently do you use web searches while program-
ming?

a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

6) How many years have you been programming?
7) How many years have you been programming in Java?

Fig. 5. Survey Questions

expected to finish all 20 tasks in the allotted time. They were

allowed to use web resources and any default Eclipse utilities

to assist in completing regular expression tasks. During the

study, screens were recorded to facilitate analysis.

C. Participants

In total, 34 participants were recruited through e-mails

sent to students who had passed the introductory object-

oriented programming course at Iowa State University. Every

participant was required to fill out a survey before they started

to solve the tasks. The participants included 25 undergraduate

students and four graduate students. There were five additional

students who had issues with screen-capture, so they were

omitted from all analyses. We compensate every participant

$20 in cash upon completion of the study.

Among the 29 participants from whom we collected data,

there was an average of 4.16 years of programming experience,

and an average of 3.26 years of Java experience. The survey

results found that a majority of participants (76%) considered

themselves as having intermediate Java programming knowl-

edge though 20 participants had little or no experience with

regular expressions. Participants either had no experience with

JUnit tests at all (65.5%) or used them regularly (34.5%). All

participants made use of web searches while programming.

D. Data Description

After removing the five videos that had screen capture

issues, we ended up with 29 videos for analysis, 45-60 minutes

each. This represents over 24 total hours of video, 94 total

attempts at solving the tasks by the 29 participants, 1,097 total

web searches, 3,401 websites visited in the browser, and 230

copy/paste interactions between the browser and the IDE.

IV. ANALYSIS

To enable a quantitative analysis of the participants’ prob-

lem solving processes, two authors designed a log to capture

important events during the sessions. Next, these two authors

transcribed the videos into the log format separately and then

merged their logs. No inter-rater reliability was considered in

this process.

A. Logged Events

Trigger events are used to identify when a log entry should

be made. A trigger event is an on-screen event that prompts

the transcriber to log the action. Once an event trigger is seen,

the event is logged. The logs contain columns to describe the

event. When a trigger event occurred, a row was added to

the log and its associated column(s) were logged. A detailed

description of the columns follows:

Time: Current time in the video when an event occurred.

Task: The name of the task in Eclipse.

Search: String from an online search query.

Website Visited: Current website visited.

Regex String: Regular expression in Eclipse or web tool.

Copy Paste: Type of copy-pasted item: test string or regular

expression.

Debugger: True if using the Eclipse Debugger.

Eclipse: True if the event occurred while using Eclipse.

Web Tool: True if the event occurred while using a web

tool.

JUnit Tests: True if the participant visited the JUnit tests.

Test Passed: The specific test(s) that passed.

Pass Rate: The pass rate of the executed JUnit tests,

calculated as: # Passed JUnit Tests

Total JUnit Tests

We consider the following as trigger events for the log entries:

• Application switch (logged: Time, Eclipse, Web Tool)

• Switch to browser (logged: Time, Website Visited)

• Search in browser (logged: Time, Search)

• Access website in browser (logged: Time, Website Visited)

• Access debugger or development environment in Eclipse

(logged: Time, Debugger)

• Copy regular expressions or strings (logged: Time, Copy

Paste, Website Visited or Eclipse)

• Paste regular expressions or strings (logged: Time, Copy

Paste, Website Visited or Eclipse)

• Compose/Edit regular expressions (logged: Time, Regex

String)

• Run JUnit tests (logged: Time, Test Passed, Pass Rate)

• Switch task in Eclipse (logged: Time, Task)

• Switch between JUnit tests and code in Eclipse IDE

(logged: Time, JUnit Tests)

For example, consider a participant who 1) opens task ValidE-

mail and starts to work on it at 00:10:04, 2) switches to

Chrome browser and 3) searches “valid email in regex Java”

200

TABLE II
PARTICIPANT’S BEHAVIORAL METRICS FOR A SUBSET OF PARTICIPANTS

(8/29)

ParID AFPR AIPR ATR Persona Vector

krl 0% (0) 20% (L) 13.5 (H) <0, 0/L, H>

b4r 0% (0) 50% (H) 68 (H) <0, H, H>

dm8 15% (L) 18% (L) 5.3 (L) <L, 0/L, L>
vrh 17% (L) 36% (H) 9.5 (L) <L, H, L>
q3d 45% (H) 23% (L) 10.5 (H) <H, 0/L, H>

clx 36% (H) 45% (H) 17 (H) <H, H, H>

l6o 39% (H) 10% (L) 4.4 (L) <H, 0/L, L>
nxb 39% (H) 33% (H) 3.7 (L) <H, H, L>

Average: 29% 31% 10.1 —

at 00:10:34, 4) clicks on and visits a Stack Overflow result

at 00:10:39, 5) copies an existing sample regular expression,

.+@.+, at 00:12:15, 6) switches to Eclipse at 00:12:16, and

7) pastes into Eclipse at 00:12:17, then 8) runs the tests. In

this scenario, the eight trigger events are: 1) switch task in

Eclipse, 2) switch to browser, 3) search in browser, 4) access

website in browser, 5) copy regular expressions or strings,

6) application switch, 7) paste regular expressions or strings,

8) run JUnit tests. The total columns being logged are: Time,

Eclipse, Search, Website Visited, Copy Paste, Regex String,

Test Passed, Pass Rate.

In the end, there were 11,644 total rows logged among all

29 participants.

B. Personas

Our process for determining personas was driven by quan-

titative observations, and was motivated by a work of Pruitt

and Grudin, which suggests that personas provide an effective

way to communicate qualitative and quantitative data [17].

We therefore use personas to synthesize and communicate

quantitative observations about study participant behavior.

1) Metrics: To assist persona identification, we consider the

following quantitative metrics:

• Average first time pass rate per task (AFPR): the pass

rate a participant produced in first JUnit test run in one

task, on average. This reflects a participant’s prior/ini-

tial knowledge of regular expressions. A high pass rate

indicates a knowledgeable participant; a low pass rate

indicates an intermediate participant; and a 0% pass rate

indicates a novice participant.

• Average improved pass rate per task (AIPR): the percent-

age of pass rate improved in one task, on average. This

reflects a participant’s learning progress during regular

expression task composition.

• Average number of test runs per task (ATR): the times

a participant tested one task, on average. This reflects a

participant’s testing behavior. A high number of test run

times indicates a tester.

2) Persona Vector Identification: We adopt the persona

identification process used in the work of Dubey, et al. [18].

The first step of persona identification process is to calculate

all the metrics discussed in Section IV-B1. Next, we classify

TABLE III
RANKING OF REGULAR EXPRESSION TASKS BASED ON AVERAGE PASS

RATE

Type Task Avg % #Attempt #100%
Validation OutlineFormat 100% 1 1
Extraction NoVolwelsWord 87% 3 2
Validation ValidEmail 86% 8 5
Extraction TrimWhitespace 84% 2 1
Validation ValidPhoneNumber 81% 6 3
Validation ReverseSentences 70% 4 2
Validation SpacedWords 67% 7 2
Extraction PossessedPossessions 63% 2 1
Extraction NoGremlins 62% 4 0
Extraction ShortestDNA 60% 3 1
Extraction LastDuplicateByte 54% 4 0
Extraction JavaIntDeclaration 53% 8 2
Extraction VerbPortion 52% 5 1
Extraction RepeatedWords 47% 6 2
Extraction GoogleKeywords 42% 12 5
Extraction TSVParser 42% 3 0
Extraction AlternatingParity 32% 4 0
Extraction HasSoyIngredient 32% 2 0
Extraction ReceiptScanner 29% 7 0
Extraction OnMinuteEvents 13% 3 0
Total 56% 94 28

the value of each metric as low (L) or high (H) against the

average value among all participants, we also label 0 (0) if the

average value is zero. Then we build persona vector to assist

creation of personas. Table II shows the metrics values (AFPR,

AIPR, ATR) and the average value of each metric among all

participants, as well as the eight identified persona vectors

(Persona Vector), each with one sample participant provided

(ParID).

V. RESULTS - RQ1

We describe the results in terms of attempts, where an

attempt is a pairing of participant and task during which

the participant ran the test cases. In total, the 29 participants

viewed 121 tasks, but only ran the tests for 94, yielding 94

attempts for analysis.

A. Overall Correctness

Overall, participants ran tests for 94 attempts. Of these, 28

succeed with 100% of the unit tests passing, and the remaining

66 were abandoned with lower pass rates, either because the

participants ran out of time (21) or switched tasks (45). The

overall average pass rate across all 94 attempts was 56%. Of

the 29 participants, 14 were successful in at least one attempt.

Table III shows the average pass rate (Avg %) on the JUnit

tests on the attempts (#Attempt) on each task (Task) with its

type listed in column Type. Column #100% shows the number

of attempts that passed all JUnit tests on this task. Pass rate for

an attempt is calculated by the maximum number of passed

JUnit tests during the entire attempt over the number of total

JUnit tests for the task. For example, if a participant passed

11/13 JUnit tests in ValidPhoneNumber at some point during

the attempt, then the pass rate is 85% for this attempt. Both

Table III and Table IV are sorted in descending order by

average pass rate.

201

From Table III, we find that eight participants attempted the

ValidEmail task and five of them successfully passed all JUnit

tests, making this the third most passed task with an average

pass rate of 86%.

Table IV categorizes the tasks (Type) and shows the number

of tasks in each category (#Tasks), the average pass rate of

attempts on these tasks (Avg %), the total number attempts

on these tasks (#Attempt) as well as the number of attempts

that achieved 100% pass rate (#100%). It also demonstrates

that participants performed best in validation tasks, as all

validation tasks were solved with pass rate of 78% on average,

and 46% of the successful attempts were in validation type.

Of 94 attempts, 28 succeed with 100% pass rate.

Validation tasks represented 25% of the program-

ming tasks (5/20), but represented 46% (13/28) of

the attempts that achieved a 100% pass rate on the

test cases.

B. Tools

During the study, participants were allowed to consult any

resources at their disposal within the IDE and the browser,

including web tools.

Of the 28 attempts that passed all JUnit tests, ten attempts

involved web tools. Nine participants who actively interacted

with web tools achieved a pass rate of 68% on average. They

spent 13:05 minutes on average on web tools, which made up

of 26.11% of their recorded sessions. The average for context

switching was 11.89 times, as participants had to check the

task specifications and test the regular expression strings in

Eclipse IDE. Seven participants passed more test cases with

the help of web tools, and six among them continued using

web tools for remaining tasks while the other one switched to

web tools near the end of the study and attempted no more

tasks. All the web tools that participants used support visual-

ization to a certain degree. Such visualizations can convert

regular expression strings to graphical states for users [8],

[9], and some can highlight the matching results for users

in debugging environments [10], [11].

Six participants used the built-in debugger in Eclipse IDE

on seven total attempts. These attempts achieved a 48% pass

rate on average. Most participants who used it in one attempt

did not return to it in subsequent attempts; only one participant

accessed it twice.

Participants who consulted web tools to visualize

regular expression behavior passed more tests than

those who did not consult web tools (67.6% vs.

54.6% in terms of pass rate).

C. Sources of Information

For information sources online, we classify the web-

sites into two categories: Q&A sites (e.g., Stack Overflow,

online forums) and D&T sites (official documentation and

official/third-party tutorials), similar to prior work [19]. After

consulting an online source, we looked at the percentage of

TABLE IV
TYPE OF TASKS AND AVERAGE PASS RATES

Type #Tasks Avg % #Attempt #100%
Validation 5 78% 26 13
Extraction 15 48% 68 15
Total 20 56% 94 28

TABLE V
ONLINE SOURCES & AVERAGE IMPROVEMENT IN PASS RATE & AVERAGE

PASS RATE

Online Sources avgImp avgPass #Attempt
Q&A sites only 24% 50% 7
D&T sites only 35% 62% 13
Both Q&A and D&T sites 31% 51% 57
None 29% 70% 17
Total 94

improvement in the passing test cases. For example, par-

ticipant #17 was working on the ValidEmail task and was

passing 4/8 tests. This participant did a search for, “regular

expression java valid email” and clicked on a result for

http://www.mkyong.com. After looking up information in this

website, the participant returned to the IDE and modified the

regular expression directly. The modified regular expression

achieved 6/8 passing tests, resulting in a 25% improvement in

pass rate.

Table V lists the categories (Online Sources), their asso-

ciated average improvement in pass rate (avgImp) and aver-

age pass rate after consulting each of several web sources

(avgPass), and the number of attempts (#Attempt) for each

category that was consulted. Of the 29 participants, 28 used

search during their problem solving tasks. The most common

resources consulted were Stack Overflow (visited 677 times),

OracleDocs (visited 282 times) and Vogella (visited 92 times).

Participants who only consulted official documentation and

tutorials for regular expressions improved their pass rate in

JUnit tests by 35% on average, which provided the highest

improvement in pass rate. Attempts being solved by consulting

only Q&A sites led to the lowest improvement in pass rate;

those being solved without consulting any online sources

achieved highest pass rate on average. A potential explanation

for this phenomenon is that participants who only relied on

Q&A sites were not engaged in learning and thinking as

actively as those who consulted documentation and tutorials,

and those who did not search may have prior experience with

regular expressions.

Figure 6 reveals the distribution of the pass rates (Fig-

ure 6(a)) and the improvement in pass rates (Figure 6(b))

for each category. In a violin plot, the white dot represents

the median value and the width of the grey areas reflects the

distribution of the data. For example, among attempts that only

consult Q&A sites, Figure 6(b) indicates about half do not

improve their pass rate, as the white dot is close to 0.0. The

widest part of the grey area is also around 0.0, indicating the

highest probability of pass rate improvement for this category.

202

0.0

0.2

0.4

0.6

0.8

1.0

Online Sources

P
a

s
s
 R

a
te

Both Q&A D&T None

(a) Online Sources vs. Pass Rate

0.0

0.2

0.4

0.6

0.8

1.0

Online Sources

Im
p

ro
v
e

m
e

n
t

in
 P

a
s
s
 R

a
te

Both Q&A D&T None

(b) Online Sources vs. Improvement in Pass Rate

Fig. 6. Pass rates and pass rate improvements for attempts that access various
online sources

Attempts being solved without consulting any sites achieved

highest median pass rate . Attempts being solved by consulting

only documentation and tutorial sites achieved 2
nd highest

pass rate and gained the highest improvement in pass rate in

terms of median. Although attempts being solved by consult-

ing only Q&A sites had relatively the same median pass rate

as attempts being solved by consulting both sites, they gained

lower median improvement in pass rate than the latter.

Participants who used official documentation and

tutorials for regular expressions and did not consult

Q&A sites, achieved the highest improvement in the

correctness of their regular expressions (i.e., 35%,

after consulting the online resource).

D. First Attempts

We recognized seven activities performed by participants:

guess (compose from nothing), search, copy and paste

(“C&P”), modify the regular expression directly (this process

will not result in an empty string), test, debug, and use of web

tools. Of the 94 attempts, 58 started with guessing in the IDE

(Guess, 49 attempts) or in web tools (Web Tools, 9 attempts).

Of those, 20 ultimately achieved success, resulting in a 34.5%

success rate. The remaining 36 attempts started with Search.

Of these, eight ultimately achieved success, resulting in a

22.2% success rate. This indicates that participants who guess

and try to solve the task first, rather than searching for existing

regular expression examples or solutions, are more likely to

pass all JUnit tests.

Participants who tried to compose a regular expres-

sion first instead of searching for a solution first are

more likely to pass all the test (34.5% success vs.

22.2% success).

E. Copy and Paste

Participants sometimes copied regular expressions directly

from search results, pasting them into the IDE. Copy and paste

(C&P) was used in 33 of 94 attempts, and the average pass

rate on these attempts was 45% (compared to an average pass

rate of 62% for non-C&P attempts). Participants who used the

C&P strategy improved their pass rates by 27% on average.

The most frequent online resources participants copied from

were Stack Overflow, OracleDocs, Vogella, TutorialsPoint and

Regular-Expressions. Participants copied possible solutions

from miscellaneous Q&A websites as well.

Participants tested the copy-pasted regular expression

strings directly as solutions in some cases (after a copy

and paste, 36.3% of the time the regular expression was

tested immediately after pasting), but more often participants

modified the regular expression strings before testing (after a

copy and paste, 57.7% of the time the regular expression was

directly modified and then tested). Participants often modified

the copied and pasted regular expressions to simply resolve

compile errors (29 of 80 C&P from websites to Eclipse).

Reuse of existing code improved pass rates on

attempts by 27% on average. However, copied and

pasted contents in 36.3% C&P interactions (from

websites to Eclipse) were slightly modified in syntax

to correct compile error.

VI. RESULTS - RQ2

After following the persona vector identification process de-

scribed in Section IV-B, we converged on a set of four unique

personas: Novice tester, Knowledgeable tester, Knowledgeable

and Intermediate (Persona and Persona Vector in Table VI).

Table VI also contains the description of each persona (De-

scription). As Table VI shows, the most frequent personas

were the intermediates, but the distribution of persona types

across the participants is relatively even.

Average descriptive characteristics, along with the interquar-

tile ranges (IQR), for each persona are further listed in

Table VII. Column AvgRegexExp and AvgJUnitExp introduces

the average self-rated experience with regular expression and

JUnit tests in pre-survey, where 0 maps to “I have never

heard of them” and 4 maps to “I am an expert”. AvgJavaExp

introduces personas’ self-reported years in programming with

Java in pre-survey. This table also contains the average pass

rate achieved (AvgPassRate), the average frequency of Google

searches (AvgSearches), the average frequency of copy and

paste (AvgC&P) and the average frequency of Stack Overflow

203

TABLE VI
SUMMARY OF PERSONA IDENTIFICATION AND DESCRIPTION

Persona Persona Vector Description

Novice tester (7/29)
< 0, 0/L, H > No prior knowledge, frequently test,
< 0, H, H > very likely (5/7) to significantly improve pass rate

Knowledgeable tester (5/29)
< H, 0/L, H > Sufficient prior knowledge, frequently test,
< H, H, H > about even chance (3/5) to significantly improve pass rate

Knowledgeable (8/29)
< H, 0/L, L > Sufficient prior knowledge, rarely test,
< H, H, L > even chance (4/8) to significantly improve pass rate

Intermediate (9/29)
< L, 0/L, L > Insufficient prior knowledge, rarely test,
< L, H, L > very likely (7/9) to slightly/no improve pass rate

TABLE VII
PERSONA STATISTICAL SUMMARY

Persona
RegexExp JUnitExp JavaExp PassRate Search C&P Stack Docs
Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR

Novice tester 1.9 0.5 1.1 0 3.4 3.5 44.1% 23.5% 7.7 3.0 1.4 3.0 9.7 8.0 8.1 9.0
Knowledgeable tester 1.6 1.0 2.2 2.0 2.3 1.0 58.8% 32.0% 11.0 3.0 3.0 3.0 15.3 13.5 4.4 4.8
Knowledgeable 2.6 1.0 1.3 0 4.3 2.0 63.5% 44.0% 7.0 6.0 4.8 4.8 1.8 2.5 1.1 1.0
Intermediate 2.2 1.0 2.1 2.0 2.8 2.0 37.7% 12.0% 11.9 7.0 4.7 8.0 10.9 7.6 4.7 4.8

visits and documentation and tutorial site visits (AvgStack,

AvgDocs). These factors reflect personas’ overall correctness,

search and copy/paste behaviors, and preference in sources of

information. In Table VII, we can see that the knowledgeables

were the most successful in terms of pass rate, followed

by the knowledgeable testers, novice testers, and finally the

intermediates. There is no significant relationship between

personas and their experience in JUnit observed in this study.

Novice tester (7/29): Novice testers claimed that they have

some experience with regular expressions and Java (3rd in

AvgRegexExp, 2
nd in AvgJavaExp), and they were observed

spending much of their time reading documentation and tuto-

rial sites (highest in AvgDocs). While they didn’t achieve any

success (AFPR of 0%) in the beginning of every attempt, they

did eventually achieve some success (3rd in AvgPassRate) and

seemed to learned about fundamental topics.

Knowledgeable tester (5/29): Though the knowledgeable

testers had the lowest average regular expression experience

and lowest average Java experience, they appeared to quickly

gain an understanding of regular expressions in Java and

achieved success through heavy tinkering (2nd in AvgPass-

Rate). The knowledgeable testers tended to favor looking

for sample solutions over learning from documentation and

tutorial sites (highest in AvgStack and 3
rd in AvgDocs).

Knowledgeable (8/29): There were eight observed knowl-

edgeable persona, and they achieved the highest average

pass rate with 63.5%. They had the highest average regular

expression experience and highest average Java experience,

suggesting that familiarity with the language being used with

regular expression development is as important as regular

expression experience itself. Knowledgeables further had the

lowest average Google searches, lowest average Stack Over-

flow site visits and lowest average documentation and tuto-

rial site visits, suggesting preexisting knowledge of regular

expressions in Java. Knowledgeables usually searched with

specific keywords, such as “regex lookahead”. This observa-

tion is supported by a prior work that found developers who

have sufficient domain knowledge tended to look for very

specific types of information [20]. The knowledgeable persona

produced the highest average copy-and-paste, and an potential

explanation is the usage of web tools during composition,

which require copy-and-paste between web tools and Eclipse

IDE.

Intermediate (9/29): Despite the intermediates being fa-

miliar with regular expressions (2nd in AvgRegexExp), they

did not achieve great success (lowest in AvgPassRate). The

intermediates tended to favor Google searching Q&A sites

like Stack Overflow (highest in AvgSearch and 2
nd in

AvgStack), and would frequently copy-and-paste regular ex-

pression strings (2nd in AvgC&P).

VII. DISCUSSION

The combination of surveys and video logs has led to

insights regarding the performance of participants, and what

tools and problem solving strategies they used during regular

expression composition.

A. Suggestions for regular expression writers

We suggest all developers come up with a solution before

searching for solutions. We also suggest searching for regu-

lar expression related information, like the usage of special

metacharacters, on official documentations, rather than for

regular expressions to reuse; in our study, these behaviors led

to higher success.

For novice testers and knowledgeable testers, we recom-

mend using web tools. Compared to Eclipse IDE and JUnit

tests, web tools that support dynamic testing can return match-

ing results immediately. In addition, web tools usually provide

both the regular expression tester and documentation on the

204

same window, which can reduce context switching for users.

Since novice testers and knowledgeable testers test programs

and check documentation frequently, they are very likely to

benefit from using web tools.

We encourage the knowledgeable testers and the interme-

diates to think critically and adopt more documentation and

tutorial sites as they search for online sources. Reusing existing

code can improve pass rates on an attempt by 27% (Sec-

tion V-E); however, our results show that people who learned

from documentation and tutorial sites were able to improve

the pass rates by 31%-35%. As demonstrated in Section V-D,

participants who came up with their own solutions prior to

looking for existing code were 1.7 times more likely to pass

all the JUnit tests than those who searched first.

B. Implications for tool developers

Visualization, as provided by web tools, seemed to help

developers with composition (Section V-B). To supplement

web tools [8]–[10] that visualize regular expressions, there is

a regular expression plugin for Eclipse IDE, QuickREx [21],

that supports java.util.regex. This plugin suggests input

metacharacters and highlights matching result for users, as

most web tools do. However, no documentation search feature

is available within the plugin. Beck, et al. concluded that regu-

lar expression experts agree that visual encoding of the regular

expression is beneficial [22]. Other work on visualization also

pointed out that visualization can support the task solving

process by displaying useful information in a condensed way

[23], enhance the programmer’s understanding of the process

of the execution [24], and serve as an external memory aid to

help programmers tracking runtime execution [25]. Moreover,

visualization can significantly help with conquering the design

barrier where programmers have cognitive difficulties with vi-

sualizing solutions to programming problems [26]. Our results

support these findings. Therefore, we suggest that features

such as visualization and quick search for documentation

should be integrated into the IDE to facilitate regular expres-

sion comprehension and reduce context switching for users.

Tools for different languages that support regular expressions

should be developed as well.

We also observed that some participants faced challenges

in migrating regular expressions from web tools or sites they

visited to Java due to differences in programming language

representations of regular expression. As mentioned in Sec-

tion V-E, 29 of 80 C&P from websites to Eclipse were edited

to address the compile errors. For example, a single backslash

in Python needs to be edited to a double backslashes in Java.

This suggests that a language migration tool would be helpful.

VIII. THREATS TO VALIDITY

Conclusion: Some tasks can produce a non-zero pass rate

when tested against an empty regular expression. This situation

might lead to an overestimation of participants’ performance.

In this study, two participants tested three tasks in total against

an empty regular expression and gained 32.7% pass rate in

average. This special case is rare, so the influence is small.

Editing and testing activities within web tools are not part

of the IDE flow and thus not captured in our results.

Construct: Participants knew they were being observed

which may have influenced their searching and composition

behaviors.

Internal: Most participants attempted multiple tasks, yet

we did not consider task order in the analysis of the results.

It is possible that learning effects influenced pass rates of

tasks attempted later in the study. However, as the tasks were

assigned in random order, the impact should be distributed

across all tasks.

External: Participants were students, and while students

write regular expressions with some frequency, the results

may not generalize to other populations. A replication with

a more diverse set of developers is needed. In addition,

years in programming (non-professionally) might not be the

best indicator to measure the programming experience for

students [27].

The 20 tasks in the case study have tasks with solutions that

are less complex than regular expressions in the wild. Future

studies will use tasks whose solutions are reflective of regular

expressions found in source code repositories, and thus may

not be representative of tasks for which programmers would

use regular expressions. However, Host, et al. concluded that

there is no significant difference between the correctness of

students and professionals [28]. Runeson also confirmed that

first year students, graduate students and industry profession-

als produced the same improvements between the different

Personal Software Process (PSP) levels [29].

IX. RELATED WORK

Regular Expression and Users: Several studies have inves-

tigated approaches to expedite regular expression processing

on a large amount of text [30], [31]. However, few studies have

focused on regular expression users, despite the fact that reg-

ular expressions are error-prone and hard to comprehend [4],

[5]. Studies that include observations of users and regular

expressions use survey [4], crowd-sourcing [5], or dynamic

program analysis [7] as methodologies.

In this work, we observe programmer behavior directly us-

ing screen capture to better understand the tools and strategies

developers use during regular expression composition.

Regular Expression Comprehension: Chapman and Stolee

explored the contexts in which the professional developers use

regular expressions, the most commonly used regular expres-

sion language features in Python, and the regular expression

behavioral similarity among projects [4]. Through a survey

of developers, the study concluded that developers complain

about regular expressions being hard to read and write. A

follow-up study on regular expression understandability [5]

concluded that a regular expression’s DFA is positively corre-

lated with comprehension.

In this work, the median DFA size of the sample solutions

are smaller than the regular expressions in the wild (i.e., 14

nodes vs. 28 nodes [7]). This indicates that the tasks in this

205

study are less complex, but were designed intentionally since

the participants have a short time to work on the tasks.

IDE Interactions: Programmers work closely with Inte-

grated Development Environments (IDEs), and Eclipse is a

popular IDE for Java [32], [33]. A guide on how to collect and

analyze general IDE usage data, which we used to guide the

logged events in our study (Section IV-A), suggests recording

commands invoked, files viewed, mouse clicks, and add-on

tools used [34].

The choice to use screen capture software and transcribe

logged events is not without precedence in the literature. To

study programmers’ actions, navigations and choices during

software maintenance tasks, Ko, et al. transcribed 12 hours of

screen-captured video across 10 developers’ work, and logged

each developer action [35].

Copy and Paste: Copy/paste is a popular technique to

assist solving programming problems [36]–[38] as it can

speed up the programming process [38]. Mann identified

four copy/paste operations to address different scenarios in

programming process, which are move, copy-identical, copy-

and-change, and copy-once [39].

We investigate how participants use the copy and paste

technique in regular expression composition, and compare this

approach with direct editing performed by participants.

Visualization: Studies have shown that the lack of under-

standing of concepts/structures/syntax poses the most difficul-

ties for programmers to solve a programming problem [24],

[40]. To assist the programmer’s understanding of the runtime

program behavior, visualization tools have been suggested [24]

and developed for educating purpose, such as Whyline [25],

Storytelling Alice [41] and Gidget Game [42]. In the context

of regular expressions, the website regexper.com [9] provides

an automata-based visualization for regular expressions.

In this study, we explore what tools participants adopt

during regular expression composition, and whether the web

tools that support visualization of regular expressions better

support composition.

Code Search and Problem Solving: Various studies have

surveyed participants about why they use web search, their

tools, and their selection criteria for code [43]–[45]. Profes-

sionals working in companies [46], [47] and students learning

programming [44] are involved as participants in these stud-

ies. Some studies focused on directly observing participants’

behaviors [48], while some other studies focused on collecting

and analyzing search logs [19], [46], with participant solving

the pre-selected tasks.

Researchers also studied the search activities within IDEs

and developed tools to facilitate searches. An extension called

Bing Developer Assistant has been developed for Microsoft

Visual Studio, which can recommend previously written API

sample code mined from public repositories and Q&A sites

to developers, and hence boost their productivity by reducing

context switches [49].

In this work, participants use search as part of their problem

solving strategies; we explore how often and whether search

leads to success.

Personas in Software Engineering: Personas are an in-

teraction design technique that establish fictional users of a

system. The practice of personas was originally used from a

marketing perspective [50]; however, Alan Cooper helped to

shift their use towards software design and development [51].

Under Cooper’s use of personas, designers focus on user goals

and activity scenarios to guide software design [52], [53].

Another use of personas in software engineering is to

support analysis of developers’ behavior. Dubey, et al. ex-

plored testers’ testing style and performance in crowdsourced

testing and categorized them into six personas based on three

quantitative metrics [18]. They also introduced hybrid personas

in this study [18]. Stylos and Clarke adapted three personas

from prior work [54], which are defined by a Visual Studio

usability group based on participants’ behavior [55]. They

explored how different personas react to various constructors

and suggest future work on comparing debugging strategies

from the perspective of personas [55]. Ford, et al. provided

a data-driven approach to identify clusters to create seven

personas by interviewing and surveying software engineers on

how they comprehend their tasks, collaborate with others and

how they spend time [56].

In our work we adopt the use of observation-oriented per-

sona development to better understand developers’ behaviors

during regular expression development.

X. CONCLUSION

Participants vary greatly in their programming experience

and programming habits. In our study of 29 participants

working on regular expression tasks, we revealed the strategies

adopted, such as search, copy and paste, and use of web tools.

We learned the participants performed best on validation tasks.

We recommend guessing and composing solutions before

searching, and learning from the documentations and tutorials

instead of the existing sample solutions.

Further, we attributed personas to each of the research par-

ticipants, grouping all 29 of them into four distinct archetypes.

These four personas exemplify the behavioral patterns ob-

served in the participants, and allow us to investigate which

strategies used by each persona were effective or not. We

found that the personas who tended to favor copy and pasting

answers from Q&A sites were less successful than those who

tried to learn from documentations and tutorials, or used heavy

tinkering.

For future work, a study that requires participants to think-

aloud is suggested to understand any learning barriers for

regular expression composition. Another direction of future

work is to explore the evolution of the regular expressions

and technical mistakes made during regular expression com-

position.

ACKNOWLEDGEMENTS

We thank Peipei Wang for assistance with the regular

expression complexity analysis. This work is supported in part

by the NSF SHF #1714699 and #1749936, and the Harpole-

Pentair endowment to Iowa State University.

206

REFERENCES

[1] T. Stubblebine, Regular Expression Pocket Reference, 2nd ed. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2007.

[2] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully automatic
wrapper generation for search engines,” in Proceedings of the 14th

International Conference on World Wide Web. ACM, 2005, pp. 66–75.
[3] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and

A. Di Pietro, “An improved dfa for fast regular expression matching,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, Sep. 2008.

[4] C. Chapman and K. T. Stolee, “Exploring regular expression usage
and context in python,” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: ACM, 2016, pp. 282–293. [Online]. Available:
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2931037.2931073

[5] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 32nd IEEE/ACM International Conference on

Automated Software Engineering, ser. ASE 2017, Piscataway, NJ, USA,
2017, pp. 405–416. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3155562.3155616

[6] Spishak, Eric and Dietl, Werner and Ernst, Michael D., “A Type
System for Regular Expressions,” in Proceedings of the 14th Workshop

on Formal Techniques for Java-like Programs, ser. FTfJP ’12.
New York, NY, USA: ACM, 2012, pp. 20–26. [Online]. Available:
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2318202.2318207

[7] P. Wang and K. T. Stolee, “How well are regular expressions tested
in the wild?” in Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 668–678. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236072

[8] “Debuggex: Online visual regex tester. javascript, python, and pcre.”
https://www.debuggex.com.

[9] “Regular expression visualizer using railroad diagrams.” https://regexper.
com.

[10] “Online regex tester, debugger with highlighting for php, pcre, python,
golang and javascript.” https://regex101.com.

[11] “Regexr: Learn, Build, & Test RegEx,” https://regexr.com/.
[12] “Regex golf,” https://alf.nu/RegexGolf.
[13] “Regex one,” https://regexone.com.
[14] “Regex crossword,” https://regexcrossword.com.
[15] A. Rosenfeld, A. Ade-Ibijola, and S. Ewert, “Regex parser ii: Teaching

regular expression fundamentals via educational gaming.” 09 2016.
[16] R. Cox, “Regular expression matching in the wild,” URL:http/ /swtch.

com/∼rsc/regexp/regexp3.html, 2010.
[17] J. Pruitt and J. Grudin, “Personas: Practice and theory,” in Proceedings

of the 2003 Conference on Designing for User Experiences, ser. DUX
’03. New York, NY, USA: ACM, 2003, pp. 1–15. [Online]. Available:
http://doi.acm.org/10.1145/997078.997089

[18] A. Dubey, K. Singi, and V. Kaulgud, “Personas and redundancies
in crowdsourced testing,” in 12th International Conference on Global

Software Engineering, ser. ICGSE ’17, Piscataway, NJ, USA, 2017, pp.
76–80. [Online]. Available: https://doi-org.prox.lib.ncsu.edu/10.1109/
ICGSE.2017.7

[19] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in SIGCHI Conference on Human Factors

in Computing Systems, ser. CHI ’09, 2009, pp. 1589–1598. [Online].
Available: http://doi.acm.org/10.1145/1518701.1518944

[20] A. von Mayrhauser and A. M. Vans, “Program understanding behavior
during debugging of large scale software,” in Papers Presented at the

Seventh Workshop on Empirical Studies of Programmers, ser. ESP ’97.
New York, NY, USA: ACM, 1997, pp. 157–179. [Online]. Available:
http://doi.acm.org/10.1145/266399.266414

[21] “Quickrex plugin,” https://github.com/netceteragroup/quickrex.
[22] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “Regviz:

Visual debugging of regular expressions,” in Companion Proceedings

of the 36th International Conference on Software Engineering. ACM,
2014, pp. 504–507.

[23] J. H. Larkin and H. A. Simon, “Why a diagram is (sometimes) worth
ten thousand words,” Cognitive Science, vol. 11, no. 1, pp. 65–100,
1987. [Online]. Available: http://dx.doi.org/10.1111/j.1551-6708.1987.
tb00863.x

[24] I. Milne and G. Rowe, “Difficulties in Learning and Teaching Pro-
grammingViews of Students and Tutors,” Education and Information

Technologies, vol. 7, pp. 55–66, 2002.
[25] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging

interface for asking questions about program behavior,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’04. New York, NY, USA: ACM, 2004, pp. 151–158.
[Online]. Available: http://doi.acm.org/10.1145/985692.985712

[26] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of the 2004 IEEE Symposium

on Visual Languages - Human Centric Computing, ser. VLHCC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–206.
[Online]. Available: http://dx.doi.org/10.1109/VLHCC.2004.47

[27] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and modeling programming experience,” Empirical Softw.

Engg., vol. 19, no. 5, pp. 1299–1334, Oct. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9286-4

[28] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a
comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp.
201–214, Nov 2000. [Online]. Available: https://doi.org/10.1023/A:
1026586415054

[29] P. Runeson, “Using students as experiment subjects an analysis on
graduate and freshmen student data,” in Proceedings 7th International

Conference on Empirical Assessment Evaluation in Software Engineer-

ing, 2003, pp. 95–102.
[30] Baeza-Yates, Ricardo A. and Gonnet, Gaston H., “Efficient text search-

ing of regular expressions,” in Algorithms and Data Structures, Dehne,
F. and Sack, J. -R. and Santoro, N., Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1989, pp. 1–2.

[31] Baeza-Yates, Ricardo A. and Gonnet, Gaston H., “Fast text searching
for regular expressions or automaton searching on tries,” J. ACM,
vol. 43, no. 6, pp. 915–936, Nov. 1996. [Online]. Available:
http://doi.acm.org/10.1145/235809.235810

[32] G. Goth, “Beware the march of this ide: Eclipse is overshadowing other
tool technologies,” IEEE Software, vol. 22, no. 4, pp. 108–111, July
2005.

[33] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse ide?” IEEE Softw., vol. 23, no. 4, pp. 76–83,
Jul. 2006. [Online]. Available: http://dx.doi.org/10.1109/MS.2006.105

[34] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. Nair,
and D. Shepherd, “A practical guide to analyzing ide usage data,” in The

Art and Science of Analyzing Software Data, 2015.
[35] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An

exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans. Softw.

Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2006.116

[36] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Working Conference on Reverse Engineering,
2006, pp. 253–262.

[37] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl,
“Assessing the benefits of incorporating function clone detection in a
development process,” in International Conference on Software Mainte-

nance, Oct 1997, pp. 314–321.
[38] K. Narasimhan and C. Reichenbach, “Copy and paste redeemed,” in

2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Nov 2015, pp. 630–640.
[39] Z. A. Mann, “Three public enemies: cut, copy, and paste,” pp. 31–35,

July 2006.
[40] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the

difficulties of novice programmers,” SIGCSE Bull., vol. 37, no. 3, pp.
14–18, Jun. 2005. [Online]. Available: http://doi.acm.org.prox.lib.ncsu.
edu/10.1145/1151954.1067453

[41] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’07. New York, NY, USA: ACM, 2007, pp. 1455–
1464. [Online]. Available: http://doi.acm.org.prox.lib.ncsu.edu/10.1145/
1240624.1240844

[42] M. J. Lee and A. J. Ko, “Investigating the role of purposeful goals on
novices’ engagement in a programming game,” in 2012 IEEE Sympo-

sium on Visual Languages and Human-Centric Computing (VL/HCC),
Sept 2012, pp. 163–166.

207

[43] S. E. Sim, C. L. A. Clarke, and R. C. Holt, “Archetypal source code
searches: a survey of software developers and maintainers,” in Program

Comprehension, 1998. IWPC ’98. Proceedings., 6th International Work-

shop on, Jun 1998, pp. 180–187.
[44] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes, “How

well do search engines support code retrieval on the web?” ACM

Trans. Softw. Eng. Methodol., vol. 21, no. 1, pp. 4:1–4:25, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2063239.2063243

[45] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp. 26:1–26:45,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2581377

[46] Brandt, Joel and Dontcheva, Mira and Weskamp, Marcos and Klemmer,
Scott R., “Example-centric Programming: Integrating Web Search
into the Development Environment,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 513–522. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753402

[47] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: A case study,” in Foundations of Software Engineering,
ser. ESEC/FSE 2015, 2015, pp. 191–201. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786855

[48] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in Conference of the Centre for

Advanced Studies on Collaborative Research, ser. CASCON ’97, 1997.
[Online]. Available: http://dl.acm.org/citation.cfm?id=782010.782031

[49] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu, “Bing
developer assistant: Improving developer productivity by recommending
sample code,” in Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 956–961. [Online].

Available: http://doi.acm.org/10.1145/2950290.2983955
[50] N. Mikkelson and W. O. Lee, “Incorporating user archetypes into

scenario-based design,” in Proc. UPA, 2000.
[51] A. Cooper, The Inmates Are Running the Asylum: Why High Tech

Products Drive Us Crazy and How to Restore the Sanity (2Nd Edition).
Pearson Higher Education, 2004.

[52] L. Schneidewind, S. Hörold, C. Mayas, H. Krömker, S. Falke,
and T. Pucklitsch, “How personas support requirements engineering,”
in International Workshop on Usability and Accessibility Focused

Requirements Engineering, ser. UsARE ’12, Piscataway, NJ, USA,
2012, pp. 1–5. [Online]. Available: http://dl.acm.org.prox.lib.ncsu.edu/
citation.cfm?id=2667081.2667082

[53] F. Anvari, D. Richards, M. Hitchens, and M. A. Babar, “Effectiveness
of persona with personality traits on conceptual design,” in 37th

International Conference on Software Engineering - Volume 2, ser.
ICSE ’15, Piscataway, NJ, USA, 2015, pp. 263–272. [Online]. Available:
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=2819009.2819048

[54] S. Clarke, “Measuring api usability,” vol. 29, pp. S6–, 05 2004.
[55] J. Stylos and S. Clarke, “Usability implications of requiring parameters

in objects’ constructors,” in 29th International Conference on Software

Engineering, ser. ICSE ’07, Washington, DC, USA, 2007, pp. 529–539.
[Online]. Available: http://dx.doi.org.prox.lib.ncsu.edu/10.1109/ICSE.
2007.92

[56] D. Ford, T. Zimmermann, C. Bird, and N. Nagappan, “Characterizing
software engineering work with personas based on knowledge worker
actions,” in Proceedings of the 11th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, ser. ESEM ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 394–403. [Online].
Available: https://doi-org.prox.lib.ncsu.edu/10.1109/ESEM.2017.54

208

